BOMAR® OLIGOMERS FOR
LIGHT-CURABLE NAIL COATINGS
UV- and LED-Curable Nail Coatings

Nail gel coatings have revolutionized the salon experience in the past decade, providing important benefits like extended wear, high gloss, excellent adhesion, and toughness. While initially broad-spectrum UV lights were used to cure the nail gels, the industry has rapidly shifted over to LED systems as the preferred cure source. LED-curable systems provide significant advantages over broad spectrum UV systems, including faster cure times, reduced energy and maintenance costs associated with LED-curing equipment, and safer UV-A curing without harmful UV-B and UV-C waves.

However, the cosmetic industry continues to look for raw materials to help overcome the many challenges to formulating UV- and LED-curing nail coatings, including low gloss, color drift/yellowing, premature chipping, and increasing regulatory requirements. Many formulas also have issues with high exotherms being generated in the curing process, which causes a burning sensation for the consumer.

Several Bomar® oligomers are ideal backbone options to consider when working to solve these challenges in UV-cured and LED-cured nail coatings. These oligomers were evaluated in a model formula to provide data on their suitability for these applications. These oligomers offer a range of properties depending on the needs within the formula, including non-yellowing characteristics, high gloss, easy removability with acetone, low MeHQ, and low heat generation. Formulas that contain oligomers with low heat generation upon cure eliminate the burning sensation that can occur when the nail is placed under the UV- or LED-curing device. Using these oligomers, companies will have the capability to formulate nail gel coatings that have desirable mechanical properties and look salon-fresh for an extended period.
Testing & Results

A selection of Bomar oligomers were tested in a model formula using a 405 nm LED light source at 75 mW of intensity to cure the formula.

Viscosity and Hardness

Although there are innovative nail product categories that defy categorization, in general there are three main types of UV/LED-curable nail coating formulations: hard gels, soak-off gels, and gel polish. Each type of formula has a different set of target requirements, particularly the viscosity and hardness. Hard gel oligomers will have the highest viscosity and hardness because they are used as an extension of the nail. The major challenge with hard gels is obtaining the combination of very high viscosity, high hardness, and a low heat generation. Soak-off gel oligomers require a lower viscosity relative to hard gel oligomers in order to make the coating more flexible and easier to remove. Obtaining a medium viscosity oligomer with good adhesion to the nail as well as the ability to soak off easily from the nail is the primary challenge with these types of nail coatings. The classic gel polish oligomers usually make up a base, color, or top coat and remain at the lowest viscosity in the spectrum of nail coating oligomers because they are used primarily for color and long-lasting shine on natural or pre-extended nails. Challenges appear in each layer of this type of nail coating.

The selected range of oligomers provides a range of viscosities and hardnesses for formulators. In general, the products with the highest durometer usually appear in the hard gel category, and materials with lower hardness typically are better suited for the more flexible soak-off gels and gel polish. Oligomers given in the table below can be blended in formulations to create chip-resistant, long-lasting gel nail coatings that last up to two weeks.
Glass Transition Temperatures of Cured Oligomers

Several different Bomar oligomers were selected with varying degrees of flexibility to allow formulators to balance properties as desired. The selection process was based on many factors, one being the published T_g of the cured formulations which is available in the oligomer’s product data sheet. Each formula consisted of 2% Irgacure 184. According to the T_g values shown in Table 4, hard gels tend to be more rigid and soak-off and gel polish tend to have more flexible properties.

Table 4. Glass Transition Temperatures of the Cured Neat Oligomers

<table>
<thead>
<tr>
<th>Bomar Oligomer</th>
<th>Glass Transition Temperature, T_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-952</td>
<td>153°C</td>
</tr>
<tr>
<td>BR-371MS</td>
<td>110°C</td>
</tr>
<tr>
<td>XR-741MS</td>
<td>107°C</td>
</tr>
<tr>
<td>BRC-4434SD</td>
<td>99°C</td>
</tr>
<tr>
<td>BR-371S</td>
<td>86°C</td>
</tr>
<tr>
<td>BR-742M</td>
<td>61°C</td>
</tr>
<tr>
<td>BR-541MB</td>
<td>60°C</td>
</tr>
<tr>
<td>BR-742MS</td>
<td>58°C</td>
</tr>
<tr>
<td>BR-551ME</td>
<td>53°C</td>
</tr>
<tr>
<td>BR-571MB</td>
<td>50°C</td>
</tr>
<tr>
<td>BRC-843D</td>
<td>45°C</td>
</tr>
<tr>
<td>BRC-443D</td>
<td>41°C</td>
</tr>
<tr>
<td>BR-744BT</td>
<td>8°C</td>
</tr>
<tr>
<td>BR-7432GB</td>
<td>-4°C</td>
</tr>
<tr>
<td>BR-543MB</td>
<td>-56°C</td>
</tr>
</tbody>
</table>

Acetone Removability

A highly desired characteristic of cured nail coatings is easy removal by acetone because it prevents skin irritation. To evaluate the coating’s removability by acetone, a thin layer of each nail coating formula was applied to glass. The coating was cured using a 405 nm wavelength LED light at 75 mW/cm2 intensity for 1 minute. The cured formulas are left out for 24 hours to ensure a full cure and then exposed to acetone double rubs (ASTM D4752). As seen in Figure 1, several of the formulas were not removed after 200 double rubs with acetone. BRC-4434SD had the best removability with only 5 rubs needed to remove the coating. However, it is important to note that while a nail coating should be easy to remove to prevent irritation, it should also be long-lasting. Replacing the difunctional monomer, DEGDMA, with a monofunctional monomer such as IBOMA will reduce the acetone double rub resistance for the formula. Relatively easy to remove coatings were BR-742M, BR-551ME, BRC-843D, BRC-443D and BR-543MB.

Figure 1. Acetone Double Resistance Provided by the Oligomers
Non-Yellowing Oligomers

In many nail coating formulations, post-cure yellowing can be an issue. This happens because photooxidation during curing generates chromophores that result in yellowness in the final coating. Therefore, it is important to minimize or eliminate yellowing in nail coating formulas. In this study, each formula is rolled out onto a Leneta card in a thin layer and cured under a 405 nm wavelength LED light at 75 mW/cm² intensity for 1 minute. Each formulation was evaluated for yellowness post-cure according to ASTM E313, using a photospectrometer. The standard white background is set before testing the cured formulas on a Leneta card. Formulas containing the oligomers XR-741MS and BR-543MB show the least amount of yellowing post-cure.

Figure 2. Yellowness Values of the LED-Cured Coatings

Gloss of Coatings after IPA Wipe

Coatings need to be wiped with IPA in order to obtain a hard and non-tacky surface. In this study, each formula is rolled out onto a Leneta card in a thin layer and cured under a 405 nm wavelength LED light at 75 mW/cm² intensity for 1 minute. After being wiped with IPA, coatings should still look glossy. To measure the gloss of coatings (ASTM D2457) after the IPA wipe, a gloss meter is used to measure a value for gloss at 20, 60, and 85 degrees. Coatings with a gloss level value of over 70 at 60 degrees are considered high gloss. Gloss levels over 80 are desired for a long-lasting gloss coating. Formulas containing BR-551ME and BR-742MS exhibit the highest gloss values in this study.

However, it is important to note that monomer selection plays a key role in the gloss level of oligomers. Since DEGDMA is a relatively hydrophilic monomer, the gloss levels of hydrophobic Bomar® oligomers such as BRC-443D and BRC-843D are reduced due to incompatibility. When these oligomers are properly formulated in more hydrophobic monomers such as IBOMA, they exhibit higher gloss.

Figure 3. Gloss Coatings after IPA Wipe
Heat Generation

Cure profiles of all formulations were analyzed by a Differential Scanning Calorimeter (DSC) equipped with a Dymax BlueWave® LED Flood VisiCure®. After 30 seconds of isothermal stabilization at 25°C, samples were exposed to 405 nm wavelength light at 75 mW/cm² intensity for 15 seconds. Maximum temperature for each sample obtained from the DSC was recorded. Neat oligomers are represented by orange data and nail coating formulas are represented in blue.

Figure 4. Maximum Temperature Observed During LED Curing

![Graph showing maximum temperature during exotherm](image)

Other Suggested Nail Coating Products

LumiSet™ resins are a range of film forming materials that can be utilized in hybrid or long-wear nail polishes for a long-lasting nail coating.

Table 6. Summarized List of LumiSet™ Film-Forming Resins

<table>
<thead>
<tr>
<th>Bomar Oligomer</th>
<th>Applications</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSR-141</td>
<td>Hybrid nail polish base/color or gel polish base/color coats</td>
<td>Sunlight-curable, film-forming base/color coat resin with good toughness; excellent adhesion</td>
</tr>
<tr>
<td>LSR-241</td>
<td>Hybrid nail polish top coat</td>
<td>Sunlight-curable, film-forming base/color coat resin with good toughness; excellent hydrophobicity</td>
</tr>
<tr>
<td>LSR-241P</td>
<td>Hybrid nail polish top coat</td>
<td>Sunlight-curable, film-forming top coat with good toughness; excellent hydrophobicity</td>
</tr>
<tr>
<td>LSR-141N</td>
<td>Hybrid nail polish base/color or gel polish base/color coats</td>
<td>Tack-free, film-forming base/color coat resin with good toughness compared to traditional cellulose-based film formers; excellent adhesion</td>
</tr>
<tr>
<td>LSR-241N</td>
<td>Hybrid nail polish top coat</td>
<td>Tack-free, film-forming top coat resin with good toughness compared to traditional cellulose-based film formers; excellent adhesion</td>
</tr>
</tbody>
</table>
Conclusion

The Bomar oligomers that underwent testing in this study offer advantages to UV- and LED-curable nail coatings. Oligomers can offer desired properties to different types of nail coatings: hard gels, soak off gels, and gel polishes. They are organized into these groups so that customers can choose the product that is most appropriate for their application. It is important for all curable nail gel coatings to be non-yellowing, high gloss, and have low MeHQ content for low skin irritation. Bomar oligomers can assist in the optimization of these properties to best suit a customer application.

To learn more, visit: https://dymax-oc.com.
© 2020 Dymax Corporation. All rights reserved. All trademarks in this guide, except where noted, are the property of, or used under license by Dymax Corporation, U.S.A.

Technical data provided is of a general nature and is based on laboratory test conditions. Dymax does not warrant the data contained in this bulletin. Any warranty applicable to the product, its application and use is strictly limited to that contained in Dymax standard Conditions of Sale published on our website. Dymax does not assume responsibility for test or performance results obtained by users. It is the user’s responsibility to determine the suitability for the product application and purposes and the suitability for use in the user’s intended manufacturing apparatus and methods. The user should adopt such precautions and use guidelines as may be reasonably advisable or necessary for the protection of property and persons. Nothing in this communication shall act as a representation that the product use or application will not infringe on a patent owned by someone other than Dymax or act as a grant of license under any Dymax Corporation Patent. Dymax recommends that each user adequately test its proposed use and application before actual repetitive use, using the data in this communication as a general guideline.